老铁们,大家好,相信还有很多朋友对于逻辑思维误导题有哪些和逻辑思维题的相关问题不太懂,没关系,今天就由我来为大家分享分享逻辑思维误导题有哪些以及逻辑思维题的问题,文章篇幅可能偏长,希望可以帮助到大家,下面一起来看看吧!
本文目录
逻辑思维题目及答案逻辑思维误导题有哪些逻辑思维训练题有哪些一、
Q先生和S先生、 P先生在一起做游戏。 Q先生用两张小纸片,各写一个数。这两个数都
是正整数,差数是1。他把一张纸片贴在S先生额头上,另一张贴在P先生额头上。于是,
两个人只能看见对方额头上的数。
Q先生不断地问:你们谁能猜到自己头上的数吗?
S先生说:“我猜不到。”
P先生说:“我也猜不到。”
S先生又说:“我还是猜不到。”
P先生又说:“我也猜不到。”
S先生仍然猜不到; P先生也猜不到。
S先生和P先生都已经三次猜不到了。
可是,到了第四次, S先生喊起来:“我知道了!”
P先生也喊道:“我也知道了!”
问: S先生和P先生头上各是什么数?
二、
有一个牢房,有3个犯人关在其中。因为玻璃很厚,所以3个人只能互相看见,不能听到
对方说话的声音。”
有一天,国王想了一个办法,给他们每个人头上都戴了一顶帽子,只叫他们知道帽
子的颜色不是白的就是黑的,不叫他们知道自己所戴帽子的是什么颜色的。在这种情况
下,国王宣布两条如下:
1.谁能看到其他两个犯人戴的都是白帽子,就可以释放谁;
2.谁知道自己戴的是黑帽子,就释放谁。
其实,国王给他们戴的都是黑帽子。他们因为被绑,看不见自己罢了。于是他们3个
人互相盯着不说话。可是不久,心眼灵的A用推理的方法,认定自己戴的是黑帽子。您想
,他是怎样推断的?
三、
有一个很古老的村子,这个村子的人分两种,红眼睛和蓝眼睛,这两种人并没有什
么不同,小孩在没生出来之前,没人知道他是什么颜色的眼睛,这个村子中间有一个广
场,是村民们聚集的地方,现在这个村子只有三个人,分
住三处。在这个村子,有一个规定,就是如果一个人能知道自己眼睛的颜色并且在晚上
自杀的话,他就会升入天堂,这三个人不能够用语言告诉对方眼睛的颜色,也不能用任
何方式提示对方的眼睛是什么颜色,而且也不能用镜子,
水等一切有反光的物质来看到自己眼睛的颜色,当然,他们不是瞎子,他们能看到对方
的眼睛,但就是不能告诉他!他们只能用思想来思考,于是他们每天就一大早来到广场
上,面对面的傻坐着,想自己眼睛的颜色,一天天过去了
,一点进展也没有,直到有一天,来了一个外地人,他到广场上说了一句话,改变了他
们的命运,他说,你们之中至少有一个人的眼睛是红色的。说完就走了。这三个人听了
之后,又面对面的坐到晚上才回去睡觉,第二天,他们又
来到广场,又坐了一天。当天晚上,就有两个人成功的自杀了!第三天,当最后一个人
来到广场,看到那两个人没来,知道他们成功的自杀了,于是他也回去,当天晚上,也
成功的自杀了!
根据以上,请说出三个人的眼睛的颜色,并能够说出推理过程!
四、
两个房子互为隔壁,一个房子中的三个开关控制另一个房子的三盏灯。
你只能各进入这二个房子一次,怎么来判断哪个开关控制哪盏灯?
五、
有9个点排列如下:
...
...
...
如何用四条直线把这9个点连起来,(要求这四条直线是连续的)
六、
有一条河,河岸边有猎人,狼,还有一个男人,带两个小孩.还有一个女人,带两个小孩,
如果猎人离开,狼就把所有的人全部吃掉,如果男人离开,女人就把她的两个小孩掐死,
如果女人离开同上.河里有一条船,船上只能做两个人(附加条件:只有猎人,男人,女人
会划船).问:这八个人如何过河(都在河一边,狼也算一个)
七、
1.第一个答案是b的问题是哪一个?
(a)2;(b) 3;(c)4;(d)5;(e)6
2、唯一的连续两个具有相同答案的问题是:
(a)2,3;(b)3,4;(c)4,5;(d)5,6;(e)6,7;
3、本问题答案和哪一个问题的答案相同?
(a)1;(b)2;(c)4;(d)7;(e)6
4、答案是a的问题的个数是:
(a)0;(b)1;(c)2;(d)3;(e)4
5、本问题答案和哪一个问题的答案相同?
(a)10;(b)9;(c)8;(d)7;(e)6
6、答案是a的问题的个数和答案是什么的问题的个数相同?
(a)b;(b)c;(c)d;(d)e;(e)以上都不是
7、按照字母顺序,本问题的答案和下一个问题的答案相差几个字母?
(a)4;(b)3;(c)2;(d)1;(e)0。(注:a和b相差一个字母)
8、答案是元音字母的问题的个数是:
(a)2;(b)3;(c)4;(d)5;(e)6。(注:a和e是元音字母)
9、答案是辅音字母的问题的个数是:
(a)一个质数;(b)一个阶乘数;(c)一个平方数;(d)一个立方数,(e)5的倍数
10、本问题的答案是:
(a)a;(b)b;(c)c;(d)d;(e)e。
八、
注:美国货币中的硬币有1美分、5美分、10美分、25美分、50美分和1美元这几种面值
。请接着看正文吧,挑战你逻辑推理的极限。
一家小店刚开始营业,店堂中只有三位男顾客和一位女店主。当这三位男士同时站
起来付帐的时候,出现了以下的情况:
(1)这四个人每人都至少有一枚硬币,但都不是面值为1美分或1美元的硬币。
(2)这四人中没有一人能够兑开任何一枚硬币。
(3)一个叫卢的男士要付的帐单款额最大,一位叫莫的男士要付的帐单款额其次,
一个叫内德的男士要付的帐单款额最小。
(4)每个男士无论怎样用手中所持的硬币付帐,女店主都无法找清零钱。
(5)如果这三位男士相互之间等值调换一下手中的硬币,则每个人都可以付清自己
的帐单而无需找零。
(6)当这三位男士进行了两次等值调换以后,他们发现手中的硬币与各人自己原先
所持的硬币没有一枚面值相同。
随着事情的进一步发展,又出现如下的情况:
(7)在付清了帐单而且有两位男士离开以后,留下的男士又买了一些糖果。这位男
士本来可以用他手中剩下的硬币付款,可是女店主却无法用她现在所持的硬币找清零钱。
(8)于是,这位男士用1美元的纸币付了糖果钱,但是现在女店主不得不把她的全部
硬币都找给了他。
现在,请你不要管那天女店主怎么会在找零上屡屡遇到麻烦,这三位男士中谁用1美
元的纸币付了糖果钱?
1、有3个人住旅馆。收费是每人10元。服务员把钱送到老板那的时候老板说给他们打折。只要他们25元。退回5元。由于无法平分。服务员偷偷藏起来2元。然后每人退回1元。现在的钱是每人拿10元-1元=9元。3*9=27元。27+服务员藏起来的2元=29元。那一元去哪里了呢?
2、向爸爸借了500,向妈妈借了500,买了双皮鞋用了970。剩下30元,还爸爸10块,还妈妈10块,自己剩下了10块,欠爸爸490,欠妈妈490, 490+490=980。加上自己的10块=990。还有10块去哪里了呢?
3、有个人去买葱,问葱多少钱一斤,卖葱的人说:”1块钱1斤,这是100斤,要100元”。买葱的人又问:“葱白跟葱绿分开卖不?”卖葱的人说:“卖。葱白7毛,葱绿3毛。”买葱的人都买下了。称了称葱白50斤,葱绿50斤。最后一算葱白50*7等于35元,葱绿50*3等于15元。35+15等于50元。买葱的人给了卖葱的人50元就走了,而卖葱的人却纳闷了,为什么明明要卖100元的葱,而那个买葱的人为什么50元就买走了呢?
4、有口井 7米深,有个蜗牛从井底往上爬,白天爬3米,晚上往下坠2米,问蜗牛几天能从井里爬出来?
5、一毛钱一个桃,三个桃胡换一个桃。拿1块钱能吃几个桃?
思维训练的时候做点训练题,效果是非常不错的。你在生活中是个喜欢做逻辑思维训练题的人吗?下面我为你整理经典的逻辑思维训练题,希望能帮到你。
经典的逻辑思维训练题
一、某岛上有三个奇怪的村庄,甲村的人从来不说谎,乙村的人从来不讲实话,丙村的人一句实话跟着一句谎话,一句谎话跟着一句实话,并且开始的一句是实话还是谎话没有准。有一天,张三、李四和王五到岛上观光,碰到两个导游,他们都说对方是丙村的。
当这两个导游做裁判,看张三、李四和王五三人谁抛石头抛得远时,他们给出不同的结论:一个说:“张三第一、李四第二、王五第三”另一个说:“王五第一、张三第二、李四第三,”那么两个导游各是哪村的?三人名次如何?(写出具体推理过程)
二、有张三,李四两个人。张三只说假话,不说真话;李四只说真话,不说假话。他们回答问题时只通过点头和摇头来表示,并不说话。有一天,一个学者面对两条路X和Y,其中一条通向首都,另一条通向小镇。他面前站着张三和李四其中的一个人,但他不知道是张三还是李四。也不知道“点头”是表示“是”,还是表示“否”。他只须问一个问题,就可以确定哪条路通向首都。
经典逻辑思维训练题答案
这个问题应该如何问?(写出具体推理过程)第一题;两导游的构成只能是:甲村+甲村;乙村+乙村;丙村+丙村;甲村+乙村;甲村+丙村;乙村+丙村;六种结构
1.很容易排除:甲村+甲村;甲村+乙村;乙村+丙村
2.若两人都是乙村的,他们说的都是假话,则三人排名:李,王,张;
3.若两人都是丙村的,他们第一句说的是真话,则后面说的是假话,所以三人排名为:李,王,张;4.若为甲村+丙村结构,丙第一次说了谎话,第二次应该说实话,甲是一直说实话的,所以两人对三人名次的答案应该相同,结果是不相同,所以不为甲村+丙村结构;所以,三人排名很容易确定,分别为:李,王,张两导游可能都来自丙村,也可能都来自乙村。
若三人的真实排名是李第一,王第二,张第三,则两导游只能判断可能来自丙村,也可能来自乙村;若真实排名与推断不符合,则两导游来自丙村。第二题:很简单他只要站在任何一条路上,对着其中一个人问:“如果我问他(另一个人),这条路不通往首都,他会怎么回答?”若两人都都摇头,就往这条路走,如果都点头,就往另外一条走。
12类逻辑思维训练题
一、和差问题
已知两数的和与差,求这两个数。
【口诀】:
和加上差,越加越大;
除以2,便是大的;
和减去差,越减越小;
除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。
二、鸡兔同笼问题
【口诀】:
假设全是鸡,假设全是兔。
多了几只脚,少了几只足?
除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24
求鸡时,假设全是兔,则鸡数=(4X36-120)/(4-2)=12
三、浓度问题
(1)加水稀释
【口诀】:
加水先求糖,糖完求糖水。
糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?
加水先求糖,原来含糖为:20X15%=3(千克)
糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)
糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)
(2)加糖浓化
【口诀】:
加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?
加糖先求水,原来含水为:20X(1-15%)=17(千克)
水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)
糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)
四、路程问题
(1)相遇问题
【口诀】:
相遇那一刻,路程全走过。
除以速度和,就把时间得。
例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?
相遇那一刻,路程全走过。即甲乙走过的路程和恰好是两地的距离120千米。
除以速度和,就把时间得。即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)
(2)追及问题
【口诀】:
慢鸟要先飞,快的随后追。
先走的路程,除以速度差,
时间就求对。
例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?
先走的路程,为3X2=6(千米)
速度的差,为6-3=3(千米/小时)。
所以追上的时间为:6/3=2(小时)。
五、和比问题
已知整体求部分。
【口诀】:
家要众人合,分家有原则。
分母比数和,分子自己的。
和乘以比例,就是该得的。
例:甲乙丙三数和为27,甲;乙:丙=2:3:4,求甲乙丙三数。
分母比数和,即分母为:2+3+4=9;
分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。
和乘以比例,所以甲数为27X2/9=6,乙数为:27X3/9=9,丙数为:27X4/9=12。
六、差比问题(差倍问题)
【口诀】:
我的比你多,倍数是因果。
分子实际差,分母倍数差。
商是一倍的,
乘以各自的倍数,
两数便可求得。
例:甲数比乙数大12,甲:乙=7:4,求两数。
先求一倍的量,12/(7-4)=4,
所以甲数为:4X7=28,乙数为:4X4=16。
七、工程问题
【口诀】:
工程总量设为1,
1除以时间就是工作效率。
单独做时工作效率是自己的,
一齐做时工作效率是众人的效率和。
1减去已经做的便是没有做的,
没有做的除以工作效率就是结果。
例:一项工程,甲单独做4天完成,乙单独做6天完成。甲乙同时做2天后,由乙单独做,几天完成?
[1-(1/6+1/4)X2]/(1/6)=1(天)
八、植树问题
【口诀】:
植树多少颗,
要问路如何?
直的减去1,
圆的是结果。
例1:在一条长为120米的马路上植树,间距为4米,植树多少颗?
路是直的。所以植树120/4-1=29(颗)。
例2:在一条长为120米的圆形花坛边植树,间距为4米,植树多少颗?
路是圆的,所以植树120/4=30(颗)。
九、盈亏问题
【口诀】:
全盈全亏,大的减去小的;
一盈一亏,盈亏加在一起。
除以分配的差,
结果就是分配的东西或者是人。
例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子?
一盈一亏,则公式为:(9+7)/(10-8)=8(人),相应桃子为8X10-9=71(个)
例2:士兵背子弹。每人45发则多680发;每人50发则多200发,多少士兵多少子弹?
全盈问题。大的减去小的,则公式为:(680-200)/(50-45)=96(人)则子弹为96X50+200=5000(发)。
例3:学生发书。每人10本则差90本;每人8本则差8本,多少学生多少书?
全亏问题。大的减去小的。则公式为:(90-8)/(10-8)=41(人),相应书为41X10-90=320(本)
十、牛吃草问题
【口诀】:
每牛每天的吃草量假设是份数1,
A头B天的吃草量算出是几?
M头N天的吃草量又是几?
大的减去小的,除以二者对应的天数的差值,
结果就是草的生长速率。
原有的草量依此反推。
公式就是A头B天的吃草量减去B天乘以草的生长速率。
将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;
有的草量除以剩余的牛数就将需要的天数求知。
例:整个牧场上草长得一样密,一样快。27头牛6天可以把草吃完;23头牛9天也可以把草吃完。问21头多少天把草吃完。
每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;
大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天)
结果就是草的生长速率。所以草的生长速率是45/3=15(牛/天);
原有的草量依此反推。
公式就是A头B天的吃草量减去B天乘以草的生长速率。
所以原有的草量=27X6-6X15=72(牛/天)。
将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;
这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;
剩下的21-15=6去吃原有的草,
所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)
十一、年龄问题
【口诀】:
岁差不会变,同时相加减。
岁数一改变,倍数也改变。
抓住这三点,一切都简单。
例1:小军今年8岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?
岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。
已知差及倍数,转化为差比问题。
26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。
例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?
岁差不会变,今年的岁数差13-9=4几年后也不会改变。
几年后岁数和是40,岁数差是4,转化为和差问题。
则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。
十二、余数问题
【口诀】:
余数有(N-1)个,
最小的是1,最大的是(N-1)。
周期性变化时,
不要看商,
只要看余。
例:如果时钟现在表示的时间是18点整,那么分针旋转1990圈后是几点钟?
分针旋转一圈是1小时,旋转24圈就是时针转1圈,也就是时针回到原位。1980/24的余数是22,所以相当于分针向前旋转22个圈,分针向前旋转22个圈相当于时针向前走22个小时,时针向前走22小时,也相当于向后24-22=2个小时,即相当于时针向后拔了2小时。即时针相当于是18-2=16(点)。
练习题及答案解析
1、有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?
由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。
解:总个数:
(21+20+19)÷2=30(个)
白球:30-21=9(个)
红球:30-20=10(个)
黄球:30-19=11(个)
答:白球有9个,红球有10个,黄球有11个。
2、水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?
由题意知,实际10天比原计划10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原计划还需用(12-10)天才能完成,也就是说原计划(12-10)天能生产水泥(4.8×10)吨。
解:4.8×10÷(12-10)=24(吨)
答:原计划每天生产水泥24吨。
3、父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?
分析知:5年前父亲的年龄是(45-5)岁,儿子的年龄是(45-5)÷4岁,再加上5就是今年儿子的年龄。
解:(45-5)÷4+5
=10+5
=15(岁)
答:今年儿子15岁。
4、学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人?
想:参加语文竞赛的36人中有参加数学竞赛的,同样参加数学竞赛的38人中也有参加语文竞赛的,如果把两者加起来,那么既参加语文竞赛又参加数学竞赛的人数就统计了两次,所以将参加语文竞赛的人数加上参加数学竞赛的人数再加上一科也没参加的人数减去全班人数就是双科都参加的人数。
解:36+38+5-59=20(人)
答:双科都参加的有20人。
5、有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?
想:“如果从甲桶倒入乙桶18千克,两桶油就一样重”可推出:甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍。
解:18×2÷(4-1)=12(千克)
12×4=48(千克)
答:原来甲桶有油48千克,乙桶有油12千克。
6、光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答、
分析:根据题意,20题全部答对得100分,答错一题将失去(5+3)分,而不答仅失去5分。小丽共失去(100-79)分。再根据(100-79)÷8=2(题),分析答对、答错和没答的题数。
解:(5×20-75)÷8=2(题)
20-2-1=17(题)
答:答对17题,答错2题,有1题没答。
7、甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒?
分析:“从两车头相遇到两车尾相离”,两车所行的路程是两车身长之和,即(240+264)米,速度之和为(20+16)米。根据路程、速度和时间的关系,就可求得所需时间。
解:(240+264)÷(20+16)
=504÷30
=14(秒)
答:从两车头相遇到两车尾相离,需要14秒。
8、小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。问小明从家里到学校有多远?
分析:在每分走50米的到校时间内按两种速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,这就可求出小明按每分50米的到校时间。
解:60×2÷(60-50)=12(分)
50×12=600(米)
答:小明从家里到学校是600米。
9、有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?
分析:由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即600米,又知乙每分钟比甲多跑(400-300)米,即可求第一次相遇时经过的时间。
解:600÷(400-300)
=600÷100
=6(分)
答:经过6分钟两人第一次相遇
10、有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长方形纸板原来的面积是多少?
分析:由“只把宽增加2厘米,面积就增加12平方厘米”,可求出原来的长是:(12÷2)厘米,同理原来的宽就是(8÷2)厘米,求出长和宽,就能求出原来的面积。
解:(12÷2)×(8÷2)=24(平方厘米)
答:这个长方形纸板原来的面积是24平方厘米。
思维训练相关文章:
1.思维训练
2.逻辑思维训练500题
3.逻辑思维训练题目及答案
4.宝宝逻辑思维训练
5.自闭症孩子的教育思考:浅谈思维训练
END,本文到此结束,如果可以帮助到大家,还望关注本站哦!